Measuring Semantic Relatedness Across Languages
نویسندگان
چکیده
Measures of Semantic Relatedness are well established in Natural Language Processing. Their purpose is to determine the degree of relatedness between two words without specifying the nature of their relationship. Most of these measures work only between pairs of words in a single language. We propose a novel method of measuring semantic relatedness between pairs of words in two different languages. This method does not use a parallel corpus but is rather seeded with a set of known translations. For evaluation we construct a data set of cross-language word pairs with similarity scores from French and English versions of Rubenstein & Goodenough’s data set. We found that our new cross-language measure correlates more closely with averaged human scores than our unilingual baselines.
منابع مشابه
Ontology-based Semantic Relatedness Measures: Applications and Calculation
We propose a procedure for measuring semantic relatedness of two words using an ontology, or semantic network dictionary. We discuss applications of this procedure in detail for lexical, syntactical, and coreference disambiguation in natural language processing as well as in machine translation. In addition, we use a simplified version of this procedure for automatic translation of the semantic...
متن کاملMeasuring Semantic Relatedness using Mined Semantic Analysis
Mined Semantic Analysis (MSA) is a novel distributional semantics approach which employs data mining techniques. MSA embraces knowledge-driven analysis of natural languages. It uncovers implicit relations between concepts by mining for their associations in target encyclopedic corpora. MSA exploits not only target corpus content but also its knowledge graph (e.g., "See also" link graph of Wikip...
متن کاملCode Similarity via Natural Language Descriptions
Code similarity is a central challenge in many programming related applications, such as code search, automatic translation, and plagiarism detection. In this work, we reduce the problem of semantic relatedness between code fragments into a problem of semantic relatedness of textual descriptions. Our main idea is that we can use the relationship between code and its textual descriptions as esta...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012